Wednesday, August 02, 2017

RHIC Sees Another First

The quark-gluon plasma created at Brookhaven's Relativistic Heavy Ion Collider (RHIC) continues to produce a rich body of information. They have now announced that the quark-gluon plasma has produced the most rapidly-spinning fluid ever produced.

Collisions with heavy ions—typically gold or lead—put lots of protons and neutrons in a small volume with lots of energy. Under these conditions, the neat boundaries of those particles break down. For a brief instant, quarks and gluons mingle freely, creating a quark-gluon plasma. This state of matter has not been seen since an instant after the Big Bang, and it has plenty of unusual properties. "It has all sorts of superlatives," Ohio State physicist Mike Lisa told Ars. "It is the most easily flowing fluid in nature. It's highly explosive, much more than a supernova. It's hotter than any fluid that's known in nature."
We can now add another superlative to the quark-gluon plasma's list of "mosts:" it can be the most rapidly spinning fluid we know of. Much of the study of the material has focused on the results of two heavy ions smacking each other head-on, since that puts the most energy into the resulting debris, and these collisions spit the most particles out. But in many collisions, the two ions don't hit each other head-on—they strike a more glancing blow.

It is a fascinating article, and you may read the significance of this study, especially in relation to how it informs us on certain aspect of QCD symmetry.

But if you know me, I never fail to try to point something out that is more general in nature, and something that the general public should take note of. I like this statement in the article very much, and I'd like to highlight it here:

But a logical "should" doesn't always equal a "does," so it's important to confirm that the resulting material is actually spinning. And that's a rather large technical challenge when you're talking about a glob of material roughly the same size as an atomic nucleus.

This is what truly distinguish science with other aspects of our lives. There are many instances, especially in politics, social policies, etc., where certain assertions are made and appear to be "obvious" or "logical", and yet, these are simply statements made without any valid evidence to support it. I can think of many ("Illegal immigrants taking away jobs", or "gay marriages undermines traditional marriages", etc...etc). Yet, no matter how "logical" these may appear to be, they are simply statements that are devoid of evidence to support them. Still, whenever they are uttered, many in the public accept them as FACTS or valid, without seeking or requiring evidence to support them. One may believe that "A should cause B", but DOES IT REALLY?

Luckily, this is NOT how it is done in science. No matter how obvious it is, or how verified something is, there are always new boundaries to push and a retesting of the ideas, even ones that are known to be true under certain conditions. And a set of experimental evidence is the ONLY standard that will settle and verify any assertion and statements.

This is why everyone should learn science, not just for the material, but to understand the methodology and technique. It is too bad they don't require politicians to have such skills.


No comments: